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ABSTRACT

Three methods for applying the EM algorithm to censored data are

considered, the Buckley-James (1979), a proposed simpler nonparametric

method and a normal model for censored data. A new estimator for the

variance of y in the Buckley-Jimes model is proposed and simulations

comparing the three methods are described. To illustrate the use of

these methods they are applied to the Stanford heart transplant data.

Key Words: Censored data; I! algorithn; Linear regression; Kaplan-

Meier estimator.
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I. Introduction

There have been many methods proposed for handling regression problems

in which the dependent variable may be censored. While several of these

methods assume an underlying distributional form, that is, normal, Weibull

or exponential, others are of a nonparametric nature and require minimal

assumptions about the unspecified distribution.

One of these techniques, developed by Cox (1972), assumes that the hazard

function X(y,x) = f(y,x)/(l-F(y,x)) has the form

X(y,x) = Xo(y)el

where Xo(y) is the underlying hazard. He then used conditional arguments

to form a partial likelihood function (Cox, 1972, 1975), independent of

Ao(y), for the estimation of 0.

W ewill focus on three methods, which are based on the linear model

y = xT + C.

Two of the methods considered here are nonparametric in that the distribution

of y is unspecified while the third assumes that y is normally distributed.

These methods rely on the expectation maximization (EM4) algorithm, introduced

by Dempster, Laird and Rubin (1977), which is broadly applicable for computing

estimates from incomplete data and is used for the estimation of 0 and the

variance of y by all three methods considered here. Although their presentation

was based on a parametric model, the EM algorithm has been applied to

nonparametric models (Buckley and James, 1979). In section 2 we discuss each of

these methods and propose a new estimator of the variance of y for the Buckley-

James method. In section 3 we present results from a simulation study
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which compares the performance of the three methods. Finally, in section 4,

we present an example using data from the Stanford Heart transplant study.

2. Estimation Techniques for Linear Regression with Censored Data

We consider the linear model

Y. - x +. j=-,..., n (1)
.j J

where the E. are independent and identically distributed with the distribution

function F which has mean zero and finite variance. The covariate vector X T

is k dimensional with Xoj = 1.

We assume here that the observed times are generated by random censorship.

Let the life times yl,..., yj be i.i.d. with distribution function F as specified

above and let the censoring times Cit,. Cn be i.i.d. with distribution

function G and further, under the assumption of random censorship, let C1,..., Cn

be independent of yl,..., yn"

We observe
Z. = min(Y ,C.) (2)

and
." {I if y.< C.

p.j (3)

0 if Y > C

with
n

nu = jil 1 (4).

For Type I censorship, a special case of random censorship, the Cj's are given

constants.

4
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Let X be the design matrix and define the vector y*(8) by

y'! (a) = .. +(1-6.) E[YJ IY > Ci, x'~o (5)
I J 3j J I 3 3

'hwn the EM estimate of B is the solution to

a (XIX) X'y* (8). (6)

This solution requires an iterative procedure, since E(Y. j Y. > Cis x T a)

is unknown and has to be estimated.

The variance a2can be estimated by

in CT 2 (y*(B) _ XB)T A (y*(B) - x3) (7)

where mn is an appropriate constant and A is a diagonal matrix. It is not

inuediately evident what to substitute in (7) for y'!(S) 2 when y. is censored.

Aitkin (1981), who considers the case where F is normal, uses the mnaximum

likelihood approach to derive the forum

y* (a) 2 6.y 2 -. Efy.2 Y>CsX] (8)Sjj" i2 I Yi CixS

with m - n and A - Is the identity matrix. He suggests using the bias

corrected estimate

'2 n~uGa =a ' i .(9)

* Schmwce and Hahn (1979), who also consider the normal model suggest

dY*(B) 2 = 6 . (l-6 ) MrY j I Y> C ,VJB2 (10)

with mn n-k and A - I. But unfortuAtely, this approach results in an

underest imation of a 2 which becomes severe for moderate and heavy censoring.
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SConsequently, the estimate 8 suffers from poor estimation of o. Since the

results from the maximu likelihood estimator are better for moderate cen-

soring we shall not report the results for the Schmee and Hahn estimator.

Buckley and James (1979) consider the nonparametric case where the under-

lying distribution F is unspecified. They suggest that the censored obser-

vations be ignored for the estimation of a2 and use

yt2 = .y. 2, A = diag(6 .), m = nu-k (11)

but introduce the correction

A2 = -2 6(j TA 2
a [li G.(y.-x.Win u 1 (12)

We propose a nonparaetric estimator of a analogous to that proposed by

Aitken (1981) in equation (8). In fact, the simulation studies we performed

suggest that this estimator of a has a smaller bias and mean square error

(MSE) than the estimator proposed by Buckley and James.

In order to apply the 11M algorithm to equation (6) for the estimation

of a we have to establish appropriate estimators for E[YJ yj > C j, x TR.

In the parametric case it is easy to find explicit expressions for this

expectation and replace it by an appropriate estimate. In the normal model,

where F = (P, we obtain (Aitkin (1981))~,

EIYJ~~~ ~~ jY , "1 T W((( -IT4) (3
E[Y *j I /j > it

and

E[n order C. Px T M -(x r8) fora2 cuC +xTO) eWq(ctaia weO) replac

where W(u) - *(u) / (1- 4, (u)) is the hazard rate of the norml distribution.

In order to obtain an estimate for the latter two exec-tations we replace

0 and a by their current estimates.

1aw oa in 2I



-5-

Buckley and James, who consider the case where the underlying distribution

function F is unknown, estinmte F using the product limit estimator (Kaplan and

Meier, 1958), _1 - F(e.,8) = ^41 1l-- [6 i
e e(.)<e n(j)

where e(1) I e(2) < (n) are the ordered values of the residuals

e.(o,0) = Z -xT,n (i is the number at risk at e(i) - and d denotes the
(i) - an )

number of failures at e(U).The Kaplan-Meier estimator is then used to

estimate E[Yj I Yj > Cj, xT] in the following manner. Uncensored observations

are replaced by

1-.[> T _-y u  T'
E [Y. W. (a) ( y= - IN 3) (15)

i I j 3 K 71 K

where the sum is over the set of uncensored residuals and

W (,))/( - F(c -x. )l when e:(o,O) < e (o,A)
wc () = 0 otherwise (6

where v(K () is the mass of the Kaplan-Meier estimator at the uncensored points.
A

In this case the Kaplan-Meier estimator F(e,O) assigns the remaining mass to

the largest residual if it is censored.

We propose to estimate the variance a2 by applying the above reasoning to

the computation of

y. 2 2  
A ('r^3 2 TAy.! + X )-2y! (a)x.) (17)

j=l -3

Replacing the y* (a) by their estimated expectations we have
i

no I Iiy (8)] 1 + ~ (X 2 E [yt(0)]1x a (18)
jlJJ 3
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and from (15) we see that for censored observations:A
E Lyji (0 1 LY~ -- x! 0)+ 2y!(a)x'rB-(xTS)2]

U ^y T T^ T

I'IK( susittn into eqatX (+8 2.\ havet(0) x

K

and

2 U T' 2

;2= $-' +~ ( y - 0 ) l) WjKC ) (Y x )

a EMM) yKK K K

substituting into equation (18) we have

i21n u ~ ( x~
j) WTjK2 O(1-YK)Y. 2+ '2

This estimator, unlike the Buckley-James estimator, uses the information in

both the censored and uncensored observations for the estimation of C. To

reduce bias we applied the bias correction

^ 2 ^2 . I
Uynew = nuI(ru-k) (20)

It is easy to see that the Buckley-James procedure becomes quite complicated,

particularly when a large number of observations are tied. Therefore, we also

consider a modified method which is very easy to implement. We propose

estimating the expectation with

ErY. I Yj > C.'xT.] = x3T + C ej e

here t is the number of '(i) > 0j. This is a simple average of all censored
A T This

and uncensored residuals Ei y () x& exceeding e C- xT. . is

method, which is in spirit of the lH algorithm, replaces censored observations

by their expectations and treats them as uncensored observations.
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To estimate the covariance matrix of 8 in the normal model we calculate

the inverse of the Fisher information matrix (Amemiya (1973)), which would be

an approximation for the random censorship case. However, for the BJ estimator

there are no theoretical results and Buckley and James suggest using the

approx imat ion

cov(,) = A {X-X) ' A (X-)) - 1 (22)

where A = diag(S.) and XU has elements n1 . 6. x. Equation (22) can
IC] j j ij)

also be used to approximate the covariance matrix of the simplified estimator.

3. Simulations

To gain some insight into the difference between the Buckley-James (BJ),

simplified nonparametric (NP) and maxinum likelihood (L) methods simulation

studies were carried out. In each case 1000 samples of size SO were drawn

with the covariates evenly spaced at 2i, i-l,..., 50. Independent life times

(v.) and censoring times (ci) were generated for each covariate and Zi

min(yi, ci) was modelled. The Beta distribution

f~x) " 1 (x-a)p - I (bx)q - 1
Px l- (ba)p'q-1

was used to generate the censoring times because a wide variety of censoring

patterns could be represented by varying the parameters, p and q, of the

adistribution. Symmetrical distributions are generated when p-q and various

degrees and patterns of asymmetry can be generated by allowing p to be

unequal to q. Each of the tables presents the average percent of censoring,

means of the parameters, MSE of the parameters and the percentage of runs

which did not converge. This percentage was computed using the total

number of samples required to achieve 1000 convergent samples.
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Table 1 presents the results for a normally distributed lifetime with

equal censoring, that is, the percentage of censoring is the same at each de-

sign point. This case is of interest because the BJ estimator of o is thought

to be well-behaved under this assumption; however, wc found that in general

the BJ estimator had the largest bias and MSE of all estimators of (u con-

sidered. The best estimator of a was the new estimator which is defined

by equation (20). This estimator uses the information from the BJ results

and makes full use of the censored data so that in general it has a smaller

'V bias and MSE than the other estimators and, in particular, this estimator

always behaves better than the BJ estimator. Both the BJ and NP estimaLors

'V underestimated ay but the NP estimator was less biased than the BJ irid was

often less biased than the ML estimator of a. The results for all three

methods of estimating 0 0 and a1were very similar with all methods being

biased for the estimation of 0 . While the ML estimator performed better for

the estimation of 0 under heavy censoring (p=l, q=2), the BJ estimator was

superior for the estimation of I i this case. The percentage of non-

convergent samples was similar in most of the cases with the ML method

having the most problems in the case of heavy censoring.

A Table 2 presents the results for a normally distributed lifetime with

* increasing censoring. In general the simulations show that the ML estimateI tends to overestimate ay while the BJ, the NP and the new estimators tend to

underestimate a. The NP estimator also tends to underestimate 0,; however,

it has the smallest MSE in all the cases considered. Both the NP and ML

estimators of a tend to be better than the BJ estimator; however, the new

estimator is generally superior to all the others in terms of bias and MSE.

The results for the estimation of a0and 01tend to be very similar with

the ML estimator doing very poorly in the case of heavy censoring (p=l, q-2).



Once again all the methods are biased for the estimation of 80 with the

WI performing the worst. As before, although the NP estimator of 01 generally

has a smller MSE it is always biased downward.

Table 3 contains simulations where a beta distribution was used to

generate both the lifetime and censoring distributions. The simulations

were performed to explore the robustness of the ML method to departures

from normality and to comnpare the behavior of the parametric and nonparametric

methods in this setting. In general, the new estimator of a had the smallest

MSE and bias. In this instance the RI estimator of a behaved very poorly.

For the symmetrical (p=q) lifetime distributions the ML estimator of 81 tended

to perform somewhat better than either of the other two, however, it was not

consistently superior to the other estimators. The W estimator of 80 tended

to be the least biased of the methods and often had the smallest MSE. For

the case of the asymmnetric lifetime distributions the WI estimator of 11 was

the least biased of the three estimators but had the largest MMS, with the

same results holding for 00. Thus, the violation of the distributional

assumption, although it does have some impact, did not seem to seriously

affect the bias and MSE of the ML estimator.
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4. Stanford Heart Transplant Example

In order to further explore the relationship between the BJ, ML and NP

estimators and to see how our proposetl estimator of a for the BJ method

perfo: d in a set of data, we analyzed the Stanford heart transplant data

given in Miller and Halperin(1982). We modelled survival time (log 10)

as a function of age for survival tiws greater than 10 days. These results,

given in table 4, follow the pattern of the previous simulations with the

new estimator (20) giving a larger estimate of a than the BJ estimator. The

ML estimate of the slope 8 is almost identical with the W estimate. The

NP estimator results in a somewhat smaller estimate of 0o and 81 than the

ML and BJ estimators.

:4

00 a

MLE 3.826 -.02453 .890
B 3.74S -.02434 .655 (,761)*

NP 3.645 -.0229 .751

Table 4: Estimators for the heart transplant data.
*new estimator (20) of a

3
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S. Conclusions

Typically, all three methods for linear regression with censored data

were very similar with no particular estimator of slope appearing superior.

However, we did find that the new estimator of a enhanced the BJ procedurc

* and would cause any tests of significance for this model to be less anti-

conservative so that we would recomend the use of this new estimator. We-

- also found that the normal model tended to be fairly robust against departures

from normality and in general performed quite well.

*Helmut Schneider's work was supported by the Deutsche Forschungsgemeinschaft
and the Air Force Office of Scientific Research.

Lisa Weissfeld's work was partially supported by National Heart, Lung and
Blood Institute contract N01-1V-12243-L.
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